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Abstract

In resent years, dynamical systems has had many applications to science
and engineering; these include mechanical vibration, lasers, biological rhythms,
super conducting circuits, insect outbreaks, chemical oscillators, genetic con-
trol systems, chaotic water wheels, and even a technique for using chaos to send
secret messages. Some of which have gone under the related headings of [nonlin-
ear analysis]. Behind these applications there lies a rich mathematical subject;
which we will treat one of them in this thesis. [2].

This subject centers on the orbits of iteration of a nonlinear rational differ-
ence equation. In particular, we are interested in the analytic analysis (e.g. the
local analysis near a fixed point, the character of semicycles and global asymp-
totic stability theory ). Although the subject has analytic analysis, a geometric
or topological flavor plays an important role for suggesting the behavior of this
rational difference equation.

In this thesis, we will investigate the nonlinear rational difference equation

BTn + YTn—k

—_— =0,1,.. 1
an‘i‘cxn—k’ n s Ly ( )

Tny1 =
where the parameters 3, v and B, C' and the initial conditions
Z_f,...,x—1 and o are nonnegative real numbers, k = {1,2,3,...}.

Our concentration is on invariant intervals, periodic character, the character
of semicycles and global asymptotic stability of all positive solutions of equa-
tion(1).

In order to investigate the global attractivity, boundedness, periodicity, and
global stability of solution of this difference equation, we will use MATLAB
to see how the behavior of this difference equation look like. MATLAB now
capable of finding approximations of solutions of this difference equation and
also producing high quality graphics representations of its behavior. Although
MATLAB are a wonderful tool for suggesting the behavior of this difference
equation; it is the base on which to build the mathematical theory, it do not
normally provide proof of its existence in the strict mathematical sense. We will
use different techniques to help us solving this difference equation and prove it.

There have been several papers and monographs on the subject
of Dynamical Systems. There are several distinctive aspects which
together make this thesis unique.

e First of all, the results of this thesis solve the open problem 6.10.17 (equa-
tion(6.100)) proposed by Kulenvic and Ladas in their monograph [Dynamics of
Second Order Rational Difference Equations: with Open Problems and Conjec-
tures, Chapman & Hall/CRC, Boca Raton, 2002]. [7]



e Second, this thesis treats the subject from a mathematical perspective with
the proofs of most of the results included: the only proofs which are omitted
either (i) are left to the reader, (ii) are mentioned in other papers. Although it
has a mathematical perspective, readers who are more interested in applied or
computational aspects of the subject should find the explicit statements of the
results helpful even if they do not concern themselves with the details of the
proofs.

e Third, this thesis is meant to be a graduate requisite and not just a paper
on the subject. This aspect of the thesis is reflected in the way the background
materials are carefully reviewed as we use them. The ideas are introduced
through numerical examples to learn the meaning of the theorems and master
the techniques of the proofs and topic under consideration.

In this thesis we use difference equation in the k** order to introduce basic
ideas and results of dynamical systems. In order to investigate this dynamical
system we divided this thesis to four chapters:

Chapter 1 gives an introduction to dynamical systems, it gives some basic
information to discrete system, linear system and difference equations. Chapters
2 shows in details the solutions of linear and nonlinear difference equations form
the first up to k**order.Chapter 3 shows in details the behavior of solutions
of linear and nonlinear difference equations. Chapter 4 shows our problem in
details; starting with the linearization and the equilibrium point, then conditions
under which the equilibrium point will be local stable or global stable, and
the others under which the solution will have period two solution, and finally
we discuss the semicycles and invariant interval. The ideas are introduced
through numerical examples to learn the meaning of the theorems and master
the techniques of the proofs and topic under consideration.

As might be expected, the two cases p > q and p < q give rise to different
dynamic behaviors.

We believe that the results about equation(1) are of paramount importance
in their own right, the results presented also give the basic theory of the global
behavior of solutions of nonlinear difference equations of order k. The tech-
niques and results in this thesis are also extremely useful in analyzing the equa-
tions in the mathematical models of various biological systems and other appli-
cations. [7].
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Introduction

In this thesis, we will study the nonlinear rational difference equation

Brp + yTn—tk

—_— =0,1,..., (1
Bx, + Cxp_j " (1)

Tp+1 =

where the parameters 5, v and B, C and the initial conditions
Z_k,...,o—1 and zo are nonnegative real numbers, k = {1,2,3,...}.

Our concentration is on invariant intervals, periodic character, the character
of semicycles and global asymptotic stability of all positive solutions of equa-
tion(1).

As we mention the thesis solve the open problem 6.10.17 (equation(6.100))
proposed by Kulenvic and Ladas in their monograph [Dynamics of Second Order
Rational Difference Equations: with Open Problems and Conjectures, Chapman
& Hall/CRC, Boca Raton, 2002]. [7]

Before studying the behavior of solutions of this rational difference equation,
we will review some subjects which will be useful to introduce a basic idea in
order to understand the above open problem successfully.

The following diagram shows where the subject of my thesis lie? what is the
related topics? what is the background material should the reader know before
studying the problem? any way my thesis will provide the reader with these
basic information as an introductory sections for the dynamical systems.
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differential equation difference equation
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The following sections are introductory sections for the dynamical systems.
It provides some very basic information. These sections are organized in terms
of some frequently asked questions, cursory answers. The ideas are introduced
through numerical examples to learn the meaning of the theorems and master
the techniques of the proofs and topic under consideration.



1.1 Dynamical System

"The dynamic of any situation refers to how the situation changes over
the course of time. A dynamical system is a physical setting together with rules
for how the setting changes or evolves from one moment of time to the next".
[10].

”In simplest terms, a dynamical system is a system that changes over time.
Thus, the solar system is a dynamical system; the united states economy is a
dynamical system; the weather is a dynamical system; the human heart is a
dynamical system”. [10].

When we model a system, we usually idealize the system in term of its state
variables of the system, which are quantities that represent the system itself.
For example, a moving body may be represented by state variable of velocity
and position over time. Model of population dynamic, the system state variable
may be the number of population that migrate, born and dead and the existing
population. [3].

”Mathematically speaking, a dynamical system is a system whose behavior
at a given time depends, in some sense, on its behavior at one or more previous
times. The words "in some sense" in the preceding sentence should be taken to
mean that we may or may not have a clue as to how a current state of a system
depends on a past state; but we have reason to believe that it does. Furthermore,
it is the task of the mathematical modeler to come up with a mathematical
construct, a model that will describe this relationship between current and past
states of the system so that predictions about the future course of events for
the system may be made with some degree of accuracy”. [10].

In other words, dynamical systems is the study of phenomena that evolve
in space and / or time by looking at the dynamic behavior or the geometrical
and topological properties of the solutions. Whether a particular system comes
from biology, physics, chemistry, or even the social sciences, dynamical systems
is the subject that provides the mathematical tools for its analysis.

The seminal work by Lorenz in 1963, gave scientists insight to recognize a
new type of motion called Chaos. Chaotic systems, which can be very simple, are
capable of generating erratic behavior that is different from the one produced by
quasi-periodic systems with a large number of frequencies of oscillations. [4,12].

The subject of dynamical systems was founded towards the end of the nine-
teenth century by the French mathematician Henri Poincare’. The differential
equations in which he interested arose from the study of planetary motion. to
make progress in the study of these equations, Poincare’ invented new topolog-
ical methods for studying their solutions, in place of the traditional methods
involving series. [4, 10, 13].



One basic goal of the mathematical theory of dynamical systems is to de-
termine or characterize the long term behavior of the system. Three kinds
of dynamical systems are common, their characteristics are closely related in
surprising ways. [10].

- Symbolic dynamical systems.

- Continuous-time systems.

- Discrete-time systems.

My thesis related to Discrete-time systems. The following section will give
some basic information in order to deep understanding the topic.



1.2 Discrete-time systems

"Discrete-time system dynamics is a topic of broad interest; the main reason
for this interest comes from the variety of the sources of discrete time dynamical
models. We may cite:

- Discrete-time models determined by the nature of the described processes:
this is particularly true for economics, biology, physiology and discrete-time
information processing.

- Discrete-time models induced by the impulses occurring in continuous-time
systems.

- Discrete models occurring in controlled systems when the feed-back in-
formation used in control generation is composed of output samples obtained
through sampling intervals of time.

- Discrete systems occurring during numerical treatment of continuous time
systems.

But the interest in discrete-time systems may also be explained by the sim-
plicity of their treatment; it requires minimal computational and graphical re-
sources to obtain the solutions of the associated difference equations and follow
this behavior. Since difference equations may be viewed as recurrence relations,
their treatment seems much simpler that the one of differential equations ". [3].

We know that a physical setting is reduced to a set of measurement, for
example, temperature, pressure, stock market prices, etc. In discrete systems,
we give these measurements at a sequence of specific times. We would hope
that given the measurements at time n that we have a rule to determine the
measurements at time n+1. [10]. If y, represents the measurements at time
n, this rule may take the form

y(k+1) = f(y(k))

where f(x) is a given function fixed for all time. The evolution of the system
is then obtained by iterating the function

yn = f(f (... f (o))
| S G ——

ntimes

Example :
Suppose we have the function

fl@)=2z(1—2z), [0,1].

If we start with an initial state of x¢g = 0.1, it is easy to compute the
subsequent states by means of the equation

Tpt1 = f(xn)



The results are shown in the table below .

TIteration of f(z) = 2z(1 — ) , initial state of 2o = 0.1

o 0.1

T2 0.2952

T3 0.41611392
T4 0.4859262512
T5 0.4996038592
Z6 0.4999996862
7 0.5000000000

We may easily guess the long term behavior of this system: the limit of x,,
is 0.5 as n— oo. In fact, x=0.5 has a special property with respect to this
dynamical system; it satisfies f(0.5) = 0.5,and thus qualifies as a fixed point of
f(z),or a point of equilibrium of the dynamical system. A little experimentation
will show that any initial state in (0,1) eventually leads to x=0.5 in the limit.
Thus, x=0.5 is an example of a stable fixed point . [10]

The following sections will give more details to the equilibrium points; the
central in the study of the dynamics of any physical system.

This is the subject of study of stability theory; a topic of great importance
to scientists and engineers.



1.3 Linear System

"A system is called a linear system if the system satisfied two
conditions:

e System that receive a sum of two inputs will also produce output equal to
the sum of the two inputs.

e System that receive a constant multiplication of input will also produce
output equal to the constant multiplication of the input.

We can summarize the two conditions of the linear system into a linear
combination. Thus, a linear system is a system that produces output equal to
the linear combination of the input ". [3].

The following are examples for linear systems

y(k+1) =5y(k)+7
y(k) = 3y(k — 1) — 2u(k)

A system that is not linear is called a non-linear system. The
output is not a linear combination of the input. The following are the
example of non-linear system

y(k+1) = 2(y(k))* +5

y(k) = 5y(k — 1) — (u(k))?

y(k) = 4y5f(k_) 2

the next section will introduce to difference equations to have better under-
standing of the examples above .



1.4 Difference Equations

Dynamical system come with many different names. Our particular interest-
ing dynamical system is for the system whose state depends on the input history.
In discrete time system, we call such system difference equation (equivalent to
differential equation in continuous time).

Difference equation is an equation involving differences. We can see dif-
ference equation from at least three points of views: as sequence of number,
discrete dynamical system and iterated function. It is the same thing but we
look at different angle. [3,14].

1. Difference equation is a sequence of numbers that generated
recursively using a rule to relate each number in the sequence to
previous numbers in the sequence.

Example:
- Sequence {1,1,2,3,5,8,13,21,...} is called Fibonacci sequence, generated
with rule

ylk+2)=ylk+1)+y(k),k=0,1,2,3,..y(0) = y(1) =1

2. Difference equation is an iterated map.
if we see the sequence as an iterated function:

Yo, f(yO)a f(f(yo)),

Then f(yo) is the first iterate of yo under f. Notation f¥(y) is the k-th iterate

of under. For example,
F(yo) = F(f(f(%0)))
The set of all iterates of yq is called the orbit of f.

Example:
Iterated function
y(k+1) = f(y(k) = (y(k))?

for yo = 1 will produce orbit{1,1,1,1,...}. If yo = 2, the iterated function
generate{2,4, 16,256,...}. When = 0.5, the iterated function yield sequence
0f{0.5,0.25,0.0625, ...}. We see that knowing the rule only is not enough to
know the behavior of the sequence. Initial value is also very important. The
orbit of yp= 1 is constant for function

y(k +1) = f(y(k)) = (y(k))*

while for yo= 2, produces unbounded orbit and the orbit is attracted to zero for
yo= 0.5. The figure below show the orbit of yy = 0.5.



0.3
0.25
0.2
015
0.1
0.05

Flc+ 1y = flpk))

yik)

Figure 1: f(y(k)) = (y(k))?

Knowing the initial value and the rule, we can generate the whole sequence
recursively. The value of k is an integer ( k=...,-2,-1,0,1,2,...) and the rule to
generate the sequence is called the difference equation or the dynamical system
or iterated function see figure (1). We will discus the meaning of this kind of

figure later when we study the stability theory.

In other words, Difference equations describe the evolution of certain phe-
nomena over the course of time. While a continuous model leading to differential
equation is reasonable and attractive for many problems, there are many cases
in which a discrete model may be more natural. For example the continuous
model of model of compound interest is an approximation to the actual discrete
process. Population growth of species whose generations do not overlap and
propagate at regular intervals. Then the population y(n+1) at period (n+1)
is a function of n and the previous generation y(n). In difference equations we
concern about the solution and analytic behavior of the solution if it exist.

[3, 9, 10, 14].

10



1.4.1 Identical Difference Equations

"Two difference equations or dynamcial system are said to be identical if
the infinite set of algebraic equation that they represent are identical. They
represent the same set of equations". [3].

Example:
y(k) —3y(k—1) =0, for k=1,23,...

is identical to
y(k —3) = 3y(k — 4) , for k=4,5,6,...

because both dynamical system generate the same sequence for the same
initial value. If yo = 1 they will generate a sequence of {1, 3,6, 18,24, 54, ...} .

1.4.2 Order of Difference Equation

"The order of a dynamcial system or difference equation is the difference
between the largest and the smallest arguments k appearing in it". [3].

Example:

y(k+1) = a(k)y(k) + b(k) has order 1

y(k+3) + a(k)y(k + 1) = b(k)y(k — 1) + c(k) has order 4

11



CHAPTER 2
Solution to Difference Equations
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Solution to Difference Equations

A solution of a difference equation is an expression (or formula) that makes
the difference equation true for all values of the integer variable k. The nature
of a difference equation allows the solution to be calculated recursively. It is

easier to see the solution of the difference equation through algebraic equation.
[3]-

The following sections will give the details to finding the solution if it’s possible
and showing the behavior of it .

2.1 Solution to Linear First Order Difference
Equations

We have difference equation
ylk+1)=ayk)+0b

with initial value y(0) = yo .
Then we can calculated the solution recursively :
set
y(0) = yo initial value

k=0:y(1)=ay(0)+b =ayo+b

E=1:9(2) =ay(l) +b=alayo +b) +b=ay + (a +1)b

k=2:y(3)=ay(2) +b=a(a®y+ (a+1)b) + b= a’yo + (a®* + a + 1)b

kE=3:y4)=ay3)+b=a(a®yo+ (a*+a+1)b)+b=a'yo+ (a®*+a®>+a+1)b

E=n—1:y(n)=ayln—1)+b==a"yo+ (a" '+ ... +a+1)b

13



However, the series

n—1
Zai:1+a+a2—|—a3+...+a"*1
i=0

has a closed-form of

l—a

nilai _ n ifa=1

Y ifa#l
Thus the solution of the difference equation

y(k+1)=ay(k)+b

with initial value yq is

Yyo+nb ifa=1
= n 2.1
v ={ LGN e

Example :
find a solution for the equation

y(n+1)=2y(n)+3",  y(1)=05

Solution :
from equation(2.1), we have

n—1
1 —1 n—k—1qk
(2) D D A

k=1

n—1 3 k
_ 2n72 2n71 e
% (3)

-1
n—2 n71§ (%)" —1

2

y(n)

— 3n _ 27L—3.

14



2.2 Solution to Linear Difference Equations of
Higher Order

The normal form of a k**-order nonhomogeneous linear difference equation
given by:

y(n+k)+pi(n)y(n+k—1)+pa(n)y(n+k—2)+...+pr(n)y(n) = g(n), (2.2)

where p;(n) and g(n) are real valued functions defined for n > ng and
pr(n) # 0. If g(n) is identically zero then equation(2.2) is said to be a ho-
mogeneous equation. letting n=0 in p;(n), we obtain

y(n+k)+pr1y(n+k—1)4+py(n+k—2)+...+pry(n) = 0, (2.3)

in this section we will give all possible solutions of equation(2.3) , the solu-
tions of equation(2.2) was investigated in [introduction to difference equations,
by Saber Elaydi. | in [12].

2.2.1 Solution of a k»-Order Homogeneous Linear
Difference Equations with Constant Coefficients

Consider the k-order homogeneous linear difference equation :
y(n+k)+pry(n+k—1)+pay(n+k—2)+...+ppy(n) = 0, (2.3)

where the p;/s are constant and py # 0. Define )\ to be the characteristic
root of equation(2.3) then A" is a solution of equation(2.3) substituting this
value into equation(2.3), we obtain

)\k—l—pl)\kil—‘r...—‘rpk =0, (24)

equation(2.4) is called the characteristic equation of equation(2.3).
The general solution of equation(2.3) has different cases depending on \'s.

case (1) : Distinct roots
Suppose that the characteristic roots A1, Ag, ..., A are distinct, i.e.

[Aul # Ao # o 7 Akl

Assume
|)\1‘ > |)\2| > > ‘)\k|7 )\ireal, 1 <3<k,

So the general solution of equation (2.3) is given by :

y(n) = et A + eca\y + ... 4 AL

15



case (2) : Repeated roots
Suppose that the characteristic roots Ay, Ao, ..., A are equal, i.e.

)\1 :)\2:...:>\]€7 )\Z—real,l S’Lgk
So the general solution of equation (2.3) is given by :
y(n) = 1 Al + canAl + ... 4+ cpnAT.

Example :
Find the solution of the following difference equation

yn+2)+6y(n+1)+9y(n) =0

Solution :
The characteristic equation of the above difference equation is given by

MN4L6A+9 =
(A+3)° =
AN o= Ay = —3.

So the general solution is
y(n) = c1(=3)" + can(—=3)™.
case (3) : The absolute value of the roots are equal
Suppose that the absolute value of the characteristic roots are equal, i.e.
Al = A2 = ... = | Ax].

In this case there are two subcases :

subcase(3.1) :
The characteristic roots A1, A, ..., Ap are equal, i.e.

)\1 :)\2:~-~:>\k7 )\ireal,lgigk.

This subcase is similar to case (2) .

16



subcase(3.2) :
If

M= =..= )\ma)\m-‘rl = A'rn—i—2 =...= M=\

Then the general solution of equation (2.3) is given by :
y(n) = (c1+can+ ...+ cmn™ DN+ (Cmg1 + Cmpon™ o en T (=1)"AT.

Example :
Find the solution of the following difference equation

y(n+2) — 16y(n) = 0.

Solution :
The characteristic equation of the above difference equation is given by

M —16 = 0
No= 16
A = 14,
so the general solution is
y(n) = a(d)" +c(-4)"

= ()" +eo(~1)" (@)

case (4) : Complex Roots
Suppose that A\; = a + i, Ay = a — i3, and that A3, A4, ..., A\ are all real
and distinct such that
[As| > |l > oo > [ Al -
Where \; = a + i = re?? = r(cosf +isinf), s = a —if = re” ¥ =
r(cosf — isinb).
Then the general solution of equation (2.3) is given by :

y(n) = c1re™ 4 core 0 4 e3Ay + ... + cp AL
= c¢1r"(cosnb + isinnb) + cor”(cosnb — isinnd) + czAs + ... + AL
= (c1 +c2)r"cosnf + (¢c1 — ca)r™ isinnb + c3Ay + ... + cp AL
= 7"[(c1 4 c2) cosnl + (c1 — ¢2) isinnb] + cg Ay + ... + cp ).
= r"a; cosnl + azsinnb] + c3 A5 + ... + cpAj.

where a1 = ¢1 + ¢ and as = (¢1 — ¢2)i.
Let
ay . a 1,02
COsSW = ——,sinw = ,w=tan"(—).

b
\/Q%Jra% \/a%+a§ ay
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Then the solution becomes
y(n) = r"y/a? + a2[cosw cosnf + sinwsinnd] + c3\ + ... + kAL

= r"\/a? + a3 cos(nf — w)

= A r"cos(nf —w).

Where A = /a2 + a3, r =+V/a2 + 5% 0= tan_l(g).
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2.3 Solution to Nonlinear Difference Equations

In general, most nonlinear Difference Equations cannot be solved explic-
itly. However, a few types of nonlinear equations can be solved, usually by
transforming them into linear equations . [12].

Example :
Find the solution of the following difference equation

y2(n +1) — 3y(n + Dy(n) + 2y%(n) = 0.

Solution :
By dividing over 3?(n), the above equation becomes

Letting
reduces the above equation to

2%(n) —3z(n)+2=0

we can factor this down to

thus , either z(n) =2 or z(n) = 1.
this leads to y(n + 1)
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CHAPTER 3

Behavior of Solutions for
Difference Equations
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Behavior of Solutions for Difference Equa-
tions

In this chapter we will give the limiting behavior of solutions for difference
equations. To simplify our exposition we restrict our discussion to the first and
second order difference equations.

3.1 Behavior of Solutions for First Order Linear
Discrete Dynamical System with Constant

Coefficient

The general form of first order linear difference equation is given by

y(k+1) = f(y(k)) 3.1)

To deep understanding the behavior of solutions for first order linear discrete
dynamical system with constant coefficient, we need to study the subject of
Stability Theory; the subject which give the features of a discrete system. The
notion of equilibrium points is central in the study of dynamics.

3.1.1 Equilibrium of Difference Equation
Definition 3.1 [8/. Equilibrium of Difference Equation.

A point x is called an equilibrium point of equation(3.1) if

y = f(y).

That s,
ynzga for n > —1,

is a solution of equation(3.1) , or equivalently , y is a fived point of f .

3.1.1.1 Equilibrium to Linear First Order Difference Equations

We have difference equation
yk+1)=ay(k)+b

with initial value yy = 0.
Then we can determine the Equilibrium as following:
Write the difference equation in the form

y(k+1) = f(y(k))
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gives

Equate
fyk) =y
produces
y=ay+b
or
J=o
Example :

Determine the equilibrium point for
y(k+1) = 2y(k) — 5.

Solution :
Set

2y — 5

QLI Q|

so the equilibrium point is 5.

We can be determined graphically the equilibrium value of a difference equa-
tion, if it is exist, by plotting the value of y(k) as horizontal axis and y(k + 1)
as the vertical axis. The point of intersection of the graph of the difference
equation with the line y(k + 1) = y(k) is the equilibrium values.

Start from initial value yq, we take vertical line to the graph, and then take
horizontal line to the line y(k + 1) = y(k). From here we again take vertical
line to the graph. Repeating this task will eventually lead us to the equilibrium
point if the point exists. [3].

Example: the iterated function f(y(k)) = (y(k))? for yo = 0.5 lead to zero
equilibrium point. (See figure 1)

Suppose at some point the solution of a difference equation deviates form

the equilibrium value. Will the solution return to the equilibrium value? This
problem is called stability problem of the difference equation.
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3.1.2 Stability of Difference Equations
Definition 3.2 [8,15]. Let I be some interval of real numbers such that

f:I =1

Let Y be an equilibrium point of equation(3.1) .
(a) The equilibrium Y of equation(3.1) is called locally stable(or stable) if for
every € > 0,there exist 6 > 0 such that if ‘yo — g}‘ < §,then
allm > 1.

(b) The equilibrium y of equation(3.1) is called locally asymptotically sta-
ble(or asymptotically stable) if it is stable and if there exist v > 0 such that

if ‘yo — Q’ < 7y,then

yn—g;’ < g, for

lim y,, = v.

n—oo

(c) The equilibrium y of equation(5.1) is called a global attractor if for every
Yo € I , we have

lim y,=y.

n—o0

(d) The equilibrium y of equation(3.1) is called a globally asymptotically stable
(or globally stable )if it is stable and is a global attractor.

(e) The equilibrium y of equation(3.1) is called unstable if it is not stable.

(f) The equilibrium y of equation(3.1) is called a repeller (or a source) if there

exist r > 0 such that yo € I and ‘yo — Q’ < r,then there exists N > 1 such that
’yN - Z?‘ 2T

Clearly , a repeller is an unstable equilibrium point .
3.1.2.1 Stability to Linear First Order Difference Equations

There are ten possible types of solutions of
y(k+1) = ay(k) + .

This difference equation is called affine dynamical system. It is one of the
simplest forms of difference equation. It has characteristic of first order linear
discrete dynamical system with constant coefficient . [3].
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type l:constant (see figure 2).

cases :
La>1, yo=1%.
2.a=1, b=0.
3.0<a<l, yo= 1.
4. —1<a<0,y0:%.
5. a:—l,y():g.

6. a < —1, y(]:%.

type 2 : Linearly increasing without bound (see figure 3).

cases :

a=1,b>0.

type 3 : Linearly decreasing without bound (see figure 4).

cases :

a=1,b<0.

type 4 : Exponentially increasing without bound (see figure 5).
cases :

a>1, yo> 2.

type 5 : Exponentially decreasing without bound (see figure 6).

a>1, yo < %.

type 6 : Exponentially increasing to a bound (see figure 7).
cases :

O0<a<l, yo< &

type7 : Exponentially decreasing to a bound (see figure 8).
cases :

0<a<l, yo> 1.

type 8 : Oscillating with constant amplitude (see figure 9).
cases :

1. a=-1, y0<g.

2. a=-1, y0>g.

type 9 : Oscillating with increasing amplitude (see figure 10).
cases :

1. a< -1, y <
2. a< -1, yo> —
type 10 : Oscillating with decreasing amplitude (see figure 11).
cases :

L. -1<a<0, yo<qZ.

2. —1<a<0, yo> .

b
l—a °
b

-

S|

Q
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Figure 2: constant type
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Figure 3: Linearly increasing without bound (unstable system)
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Figure 4: Linearly decreasing without bound (unstable system)
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Figure 5: Exponentially increasing without bound (unstable system)
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Figure 6: Exponentially decreasing without bound (unstable system)
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Figure 7: Exponentially increasing to a bound (stable system)
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Figure 8: Exponentially decreasing to a bound (stable system)
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Figure 9: Oscillating with constant amplitude

28



vk

il — il
Fo

k

Figure 10: Oscillating with increasing amplitude (unstable system)
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Figure 11: Oscillating with decreasing amplitude (stable system )
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3.2 behavior of solutions for second order linear

discrete dynamical system with constant coeffi-
cient

The general form for second order homogenous linear discrete dynamical
system with constant coefficient is given by :

y(n+2) +py(n+1)+qy(n) =0, (3.2)

where the p,q are constant. define A to be the characteristic root of
equation(3.2) then the characteristic equation to equation(3.2) is given by

M4 pr+q=0, (3.3)

The general solution of equation(3.2) has different cases depending on \'s .

case (1) : Distinct roots

Suppose that the characteristic roots A1, Ao are distinct, i.e. |A1| # |Aq]
Assume [A1| > |Aa], A real,

so the general solution of equation (3.2) is given by :

y(n) = A+ Ay

A n
)‘? |:cl + c2 <)\i) :| )

since

consequently,
lim y(n) = lim ¢ AT,
n—oo n—oo
There are six different cases here depending on the value of A;.[11].
1. Ay > 1: the sequence{c; \]'} diverges to co (unstable system).
2. A1 = 1: the sequence{c; AT} is a constant sequence .
3. 0 < A <1 : the sequence{c; AT} is monotonically decreasing (stable
system) .
4. —1 < X1 < 0: the sequence{ci1 AT} is oscillating around zero (alternating
in sign ) and converging to zero (stable system ).
5. A1 = —1: the sequence{c; AT} is oscillating between two values ¢, —c;.
6. A1 < —1: the sequence{c;\]'} is oscillating but increasing in amplitude
(unstable system)
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case (2) : Repeated roots
Suppose that the characteristic roots A1, A2 are equal, i.e. Ay = Ao, A; real
so the general solution of equation (3.2) is given by :

y(n) = AT + canA?
= (c1 +can) A}

if [A\1] > 1, the solution y(n) diverges either monotonically if A > 1, or
oscillatory if A < —1.However if |A| < 1, then the solution converges to zero .

case (3) : Complex Roots
Suppose that Ay = a+ i3, Ao = a — i3, and that A3, A4, ..., A\ are all real
and distinct such that
[As| > |Aa] > ... > | Al
Where \; = a + i3 = re? = r(cosd +isind),\y = a — i = re ¥ =
r(cosf —isind).
As we see in chapter 2 the general solution of equation (2.3) is given by :

y(n) = A r" cos(nf — w). (3.4)
Where r = a2 + 2, 0 = tan_l(g).

The solution y(n) oscillates since the cosine function oscillates. However,

y(n) oscillates in three different wayes depending on the location of the conjugate
characteristic roots:

o7 > 1: here \{ and Ay = )\_1 are outside the unit circle. Hence y(n)
oscillating but increasing in magnitude (unstable system).

e r =1:here \; and \y = )\71 lie on the unit circle. Hence y(n) oscillating
but constant in magnitude.

er < 1:here \; and N\ = ):1 lie inside the unit circle. Hence y(n) oscillating
but converges to zero as n — oo (stable system).

We can summarize the above discussion by the following two theorems.

Theorem [12]. The following statements hold.

(i) All solutions of equation (3.4) oscillate (about zero) if and only if the
equation has no positive real characteristic roots.

(ii) All solutions of equation (3.4) converges to zero (i.e. the zero solution is
asymptotically stable) if and only if max {|A1], ||} < 1.

Theorem [7]. Linearized Stability.
Consider the difference equation

Yn+1 = f(y7L7y'rL—1)7n = Oa 13 (35)
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(a) If both roots of equation(3.3) have absolute values less than one, then the
equilibrium y of equation(3.5) is locally asymptotically stable.
(b)If at least one of the roots of equation(3.3) has an absolute value greater

than one, then y is unstable .
(c)Booth roots of equation(3.3) have absolute values less than one if and only

if
pl<1l-g<2

in this case, y is a locally asymptotically stable.
(d)Booth roots of equation (3.3) have absolute values greater than one if and
only if
lgf >1 and  [p|>|1—¢]

in this case, y is a repeller.
(e)One root of equation (3.3) has an absolute value greater than one while
the other root has an absolute value less than one if and only if

p?+4p>0 and |p| > |1 —gq|.

in this case, = is unstable and is called a saddle point .
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CHAPTER 4

Dynamics of a kth order
Rational Difference Equation
UsingTheoretical and
Computational Approaches
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Dynamics of a kth order Rational Dif-
ference Equation Using Theoretical and
Computational Approaches

4.1 Introduction and Preliminaries

The dynamical characteristics and the qualitative behavior of positive solu-
tions of some higher order nonlinear differences equations are ivestigated.

Dehghan et al. [6] investigated the global stability, invariant intervals, the
character of semicycles, and the boundedness of the equation

Tn +P
Tpp1 = —2"2  p=0,1,2,... (4.1
e Tn + qQTn—k ( )

where the parameters p and ¢ and the initial conditions z_g,...,z_jand zq

are nonnegative real numbers, k = {1,2,3,...}.

Li and Sun [15] investigated the periodic character, invariant intervals, os-
cillation and global stability of all positive solutions of the equation

Y& + Tn—k
x =—— n=0,1,2... (42
n+1 q + Tk 9 y ( )
where the parameters p and ¢ and the initial conditions = _g, ..., z_jand xg
are nonnegative real numbers, k = {1,2,3,...}.
DeVault et al. [11] investigated the global stability and the periodic character
of solutions of the equation

P+ Tn—k
= — =0,1,2,... 4.3
Tn41 qxn‘f'fﬁnfk:’ n 5 Ly 4y ( )

where the parameters p and ¢ and the initial conditions x_g,...,z_jand zq
are nonnegative real numbers, k = {1,2,3,...}.

All of them showed that the two cases p < ¢ and p > ¢ give rise to different
dynamic behaviors.

4.1.1 Statement of the Problem

In this thesis, we will study the nonlinear rational difference equation

an + VYTn—k
= =0,1,... 4.4
Tn+1 Bz, + Cap g’ n y Ly ( )

where the parameters 3,y and B, C and the initial conditions x_g,...,z_1
and zg are nonnegative real numbers, k = {1,2,3,...}.
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Our concentration is on invariant intervals, periodic character, the character
of semicycles and global asymptotic stability of all positive solutions of equa-
tion(4.4).

To analyze equation(4.4) more theoretically, it is a good idea to study the
difference equation

Tl = % n=01,.. (45)

where the parameters 3, and B, C' and the initial conditions x_;and z( are
nonnegative real numbers.

The global stability of equation (4.5), the special case of equation (4.4) for
k = 1, has been investigated. They showed, in respect to variation of the
parameters, the positive equilibrium point is globally asymptotically stable or
every solution of equation(4.5) lies eventually in an invariant interval. Kulenovic
and Ladas, in addition, considered equation(4.5) in their monograph [7]. We
interested now to study and solve equation(9.4).

Here, we will list some definitions which will be useful in our investigation.
4.1.2 Equilibrium of k» order Rational Difference Equa-
tion
Definition 4.1 [15]. A point x is called an equilibrium point of equa-
tion(4.6) if
r = f(z,z).
That is,

T, =2z, forn>-1

is a solution of equation(4.6), or equivalently , x is a fized point of f .
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4.1.3 Stability of k» order Rational Difference Equa-
tion

Definition 4.2 [6]. Let  be an equilibrium point of equation(4.6) and
assume that I is some interval of real numbers .

(a) The equilibrium = of equation(4.6) is called locally stable(or stable) if
for every € > 0, there exist § > 0 such that if

T_fy .. To1,T0 €1

and B B B
‘x,k — m‘ + ...+ ‘x_l —x‘ + )xo —m‘ <9,

xn—:_v‘ <&, for all n > —k.

(b) The equilibrium = of equation(4.6) is called locally asymptotically stable
(or asymptotically stable) if it is stable and if there exist v > 0 such that if

T_f, .. To1,20 €1

and
‘x_k —x‘ + ...+ ‘x_l —x‘ + ‘xo—x‘ <,
then
lim z,, = x.
n—oo

(c) The equilibrium = of equation(4.6) is called a global attractor if for every
T_fy.. To1,Z9 € I , we have

lim z,=z.
(d) The equilibrium = of equation(4.6) is called a globally asymptotically
stable (or globally stable ) if it is stable and is a global attractor.

(e) The equilibrium x of equation(4.6) is called unstable if it is not stable.

(f) The equilibrium x of equation(4.6) is called a repeller (or a source) if
there exist r > 0 such that if x_g,..x_1,29 € I and

‘m,k —3_3) + ...+ ‘x,l —5‘ + ‘xo —3_6‘ <,
then there exists N > 1 such that
‘SL‘N — 5‘ >

Clearly, a repeller is an unstable equilibrium point .

36



4.1.4 semicycle of a solution of ki order Rational
Difference Equation

Definition 4.3 [5]. Let z be a positive equilibrium of equation(4.6). A

o0
positive semicycle of a solution {x,} of equation(4.6) consist of a "string” of
n=—=%k

terms {21, T111, ..., Ty, all greater than or equal to the equilibrium x with
[>—-1 and m <o
such that B
either l=—-1 or [>-1 and x_1<zx
and

either m=o00 or m<oo and xm+1<§.

o0
A negative semicycle of a solution {x,} of equation(4.6) consist of a "string"

n=—1

of terms {xy, T111, -, Ton },all less than or equal to the equilibrium x with
[>—-1 and m < o0

such that
either l=—-1 or [>—-1 and z;1>=z

and
either m=o00 or m<oo and Tyt > T.

4.1.5 Linearization of kt*» order Rational Difference
Equation

Definition 4.4 [15]. Let

of /- - of — —
aza—i(x,x> and b:a—‘z(x,x)

where f (u,v) is the function in equation(4.6) and x is an equilibrium of the
equation . Then the equation

Ynt1 = aYn + OYn—k, n=0,1,... (4.7)

is called the linearized equation associated with equation(4.6) about the equi-

librium point x. Its characteristic equation is

N _a\F — =0 (4.8)
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Now, we will list and prove some theorems which will be useful in our inves-
tigation.

Theorem 1 Let I be some interval of real numbers and let
foIMt g

be a continuously differentiable function . Then for every set of initial con-
ditions x_p, ..., x_1,x9 € I , the difference equation

Tp41 = f(x7l7$7l—k)7 n=0,1,.. (46)

has a unique solution {xz,}. [6].
n=—Fk

Theorem 2 Linearized Stability. [14]
(a) If all the roots of equation(4.8) lie in the open unit disk |\| < 1, then the

equilibrium x of equation(4.6) is asymptotically stable.
(b) If at least one of the roots of equation(4.8) has an absolute value greater

than one, then x is unstable .

Theorem 3 Assume that a,b € R and k € {1,2,...} then
la] + [b] < 1 (4.12)

18 a sufficient condition for the a asymptotic stability of the difference equa-
tion(4.6). Suppose in addition that one of the following two cases holds.

(a) k odd and b>0.

(b) k even and ab>0.

Then (4.12) is also a necessary condition for the asymptotic stability of
equation(4.6). [10].

Theorem 4 Assume that f € [(0,00) x (0,00), (0,00)] is such that:f(x,y) is
increasing in x for each fixed y, and f(x,y) is decreasing in y for each fixed

7. Let x be a positive equilibrium of equation(4.6). Then except possibly for
the first semicycle, every oscillatory solution of equation(4.6) has semicycle of
length at least k. Furthermore, if we assume that

flu,u) =z for every u (4.13)
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and
flx,y) <z forevery z <y <z (4.14)

then {x,} oscillates about the equilibrium y with semicycles of length k + 1
or k+ 2, except possibly for the first semicycle which may have length k. The
extreme in each semicycle occurs in the first term if the semicycle has two terms
and in the second term if the semicycle has three terms...and in the k+1 term
if the semicycle has k+2 terms.

Proof. When k=1, the proof is presented as theorem 1.7.4 in[7]. We just
give the proof of the theorem for k=2, the other cases for k > 3 are similar
and we omitted them. Assume that {x,} is an oscillatory solution with three
consecutive terms TN_1,TN,TN+1 Such that

o1 <x < TN+1-

then by using the increasing character of f we obtain

tnt2 = f(any1,2n-1) > flz,2) =2

which show that the next term x 4o also belongs to the positive semicycle. if

TN > x , then the result follows. otherwise if xn < x, hence

i3 = f(any2,2n) > f(z,2) = .

which shows that it had at least three terms in the positive semicycle. The proof

in the case xy_1 > x > xN411s similar and is omitted. Also, assume that {x,}
is an oscillatory solution with three consecutive terms Ty _1,TN,TN+1 Such that

TN_1 > x > TN41, and xN <z

then by using the increasing character of f we obtain

any2 = f(ant,an-1) < f(ant,anen) =@
which show that the positive semicycle has length three. If
INt1 > TN_1 > T
then by using the increasing character of f and condition(4.13) we obtain
Tni2 = f(eni1,on-1) > f(TN41,TN41) =
and by using condition(4.14) we find

eny2 = f@nt1,2v—1) < TN41.

The proof is complete. ®

39



Theorem 5 Assume that f € [(0,00) x (0,00),(0,00)] is such that: f(z,y) is
decreasing in x for each fived y, and f(x,y) is increasing in y for each fized

2. Let x be a positive equilibrium of equation(4.6). Then except possibly for
the first semicycle, every oscillatory solution of equation(4.6) has semicycle of
length k.

Proof. When k=1, the proof is presented as theorem 1.7.1 in[7]. We just give
the proof of the theorem for k=2, the other cases for k > 3 are similar and
we omitted them. let {x,} be a solution of equation(4.6) with at least three
semicycles, then there exists N > 0 such that either

rn_1 < x < Tn41.
or

IN-12T >INyl
we will assume that

IN-1 < T < TN41-

the other case is similar and will be omitted,then by using the monotonic char-
acter of f(x,y) we have

TN+2 = f($N+1,-TN—1) < f(ivi) = .
and o _
Tn43 = f(rny2,2n) > f(z,2) = .
Thus B
TN+2 < T < TN43.

The proof is complete. ®

Theorem 6 Consider the difference equation

Yn+1 = f(ynvyn—k)7n = 07 1 (46)

when k € {1,2,...}. let I = [a, b] be some interval of real numbers and assume
that
[+ la,b] x [a, b] — [a, b];

18 continuous function satisfying the following properties :

(a) f(z,y) is non-increasing in x € [a,b] for each y € [a,b] , and f(z,y) is
non-decreasing in y € [a,b] for each x € [a,b];

(b) the difference equation(4.6) has no solutions of prime period two in [a, b];
then equation(4.6) has a unique equilibrium y € [a,b] and every solution of

equation(4.6) converges to y.
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Proof. set mo=a and My=0b and for i =1,2,... set
M; = f(mi—1, M;—1) and m; = f(M;_1,m;_1)
Now, observe that for each i > 0,
mo<mi <..<m; <..<M;<...< M <M

and
m; <y, < M; forn>(i—1Dk+1
set
m= limm; and M =limM;
1—00 i—00
Then clearly

M > lim supz; > lim infz; >m
11— 00 71— 00

and by continuity of f,

m= f(M,m) and M = f(m,M).
In view of (b)

The proof is complete. ®

Theorem 7 Let I = [a,b] be an interval of real numbers and assume that
f:[a,b] x [a,b] — [a,b];

s continuous function satisfying the following properties :

(a) f(x,y) is non-decreasing in x € [a,b] for each y € [a,b], and f(z,y) is
non-increasing in y € [a,b] for each x € [a,b];

(b) if (m, M) € [a,b] X [a,b] is a solution of the system

fm,M)=m and f(M,m)=M

Then m=DM.
Then equation(4.6) has a unique equilibrium y € [a,b] and every solution of

equation(4.6) converges to y. [6]
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4.2 Change of Variables

Return to our problem ,

BTy + YTn—k

—_— =0,1,.. 44
an_"_cxnika n )+ ( )

LTn+1 =

where the parameters 3,y and B, C' and the initial conditions z_g, ..., z_jand
xo are nonnegative real numbers, k = {1,2,3,...}.
The change of variables

=L
n Cyn
reduces equation(4.4) to the difference equation
+ Yn—k
Ypgg = DTk 0,1, (4.9)
qYn + Yn—k
_ B _ B
Wherep—; and ¢ =&
with
p,q € (0,00)

Y—ky-y Y-1,Y0 S (Oa OO) .

Proof. since

Ty = ly
n C n-
x = ly
n+1 C n+1-
x = ly
n—=k C n—k
substitute in equation(4.4)
v _ 5%% + V%ynfk
c¥m T T BZ 4 C2ynx

w0 v & BYyn +vyn—rk)
T Z By + Cyar)
ie.
Y . ’Y(%yn + ynfk)
CynH B C(%yn + Yn—t)
hence
%yn + Yn—k
gt gyn + Yn—k
Let
8 B
p= ;, q= C



reduces the above formula to

Yy = DUk 0 gL (4.9)
QYn + Yn—k

To avoid a degenerate situation we will also assume that

P#q

The proof is complete. m
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4.3 Equilibrium Points

Here we investigate the equilibrium points of the nonlinear rational difference
equation

DPYn + Yn—k
Yl = ————————, n=0,1,... (4.9
n+ qYn + Yn—k ( )
where the parameters p, ¢ and the initial conditions y_g,..., y_1,¥yo are

nonnegative real numbers, k = {1,2,3,...}.

In view of definition (4.2) and the above restriction on the initial conditions
of equation(4.9), the equilibrium points of equation(4.9) are the nonnegative
solutions of the equation

|

i~
< |
+
< |

hence

is the only equilibrium point.
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4.4 Linearization

For our problem we have

now,

SO

hence

but

SO

ie.

Also,

SO

hence

but

SO

_pu+v
B qu +v

f (u,0)

af _ (qu+0)(p) — (pu+v)(q)

ou (qu +v)?
of _ vlp—4q
ou  (qu+v)?
%&igy_y@—f)__g@—w
! (v +9)  (yg+1))
s_ptl
V=T
0 ) = -9 p+De-o
ou T (B DR @+ D+ D

q+1

of — - (p—q)
P e PE TPy

of _ (qutv) = (pu+v)

v (qu +v)?
of _ ulg—p)
o (qu+v)?
g&igy_y@—f)_gym—@

@y +9)°  (ylg+ 1))
s
Y=

pt1

d1l@—p)  (p+1)(g-p)

20 T ) T e D T )



e of -~ (¢—»p)
FA R PR TPy

so, the linearized equation of equation(4.9) is

R et B a-p)
T+ D+ ) (g D+ Y
Let
_p-a .
(p+1)(qg+1)
SO (a-p) -
(g+1)p+1)
Then

Zn4+1 = QZp — AZp—k

i.e., the linearized equation of equation(4.9) is given by
Znt1 — aZp + azp_ =0 (4.10)
and its characteristic equation is

ML\ a=0 (4.11)
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4.5 Local Stability

As we mentioned in sections (4.3) and (4.4), equation(4.9) has the only
positive equilibrium point;
p+1
q+1
and the linearized equation is given by

&:

p-q (¢ —p)
p+1+1D)™ @+ DpEp+1)

Zntl = ( Zn—k

By theorems (2) and (3) we have the following result.

Theorem 8 (a) Assume that p > q ,then the positive equilibrium of equa-
tion(4.9) is locally asymptotically stable .

(b) Assume that p < q,and k odd ,then the positive equilibrium of equa-
tion(4.9) is locally asymptotically stable when

q<pq+3p+1.

and unstable when
q>pq+3p+ 1.

(c) Assume that p < g,and k even, then the positive equilibrium of equa-
tion(4.9) is locally asymptotically stable.

Proof. Applying to theorem(3)

la] + |a] < 1
SO
2lal <1
i.e.
o < 2
2
hence 1
D)
then 1 1
— P—q
2 (pt+D+1) 2
SO
—(p+1)(g+1)<2(p—q) <(p+1)(g+1)
i.e.

—pq—p—q—1<2p—2q<pg+p+q+1
(1) @)

47



from the first inequality we have

—pg—3p—q—1<-2q
SO
—pg—3p—1<—q
then
pg+3p+1<q

from the second inequality we have

2p<pg+p+3qg+1

SO
=3¢ <pg—p+1
i.e.
-1
q> 7(1)(1 -p+1)
then
q> ?(p(q— 1)+1)
which is always satisfied.
notice that :
e for k odd and b >0
ie.
q—Dp 0

(p+1)(g+1)

implies that p < gq.
e for k even and ab > 0
i.e. a(—a) > 0, (impossible since a > 0). =
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4.6 Existence of a Two Cycles

In this section we give necessary and sufficient condition for equation(4.9) to
have a prime period-two solution and we exhibit all prime period-two solutions
of the equation.

Theorem 9 (1) When p > q.
Equation(4.9) has no nonnegative prime period-two solutions .
(2) When p < q.
FEquation(4.9) has prime period-two solutions iff k odd and ¢ > pq+3p+1.

@, D,

Where the values of ® and U are the (positive and distinct )solutions of the
quadratic equation
p(1—p)

= 0.
q—1

t2 — (1 —p)t+

Proof. (1) When p > q.
Assume  for the sake of contradiction that there exist distinctive nonneg-
ative real number ® and ¥ , such that

o ®, U, D, .

is a prime period-two solution of equation (4.9).there are two cases to be
considered .
Case (a) : k is odd.
in this case ® and ¥ satisfy

U+ o

P
qU + &’

and "
e
q® + v

50
O(qU +P)=p¥ + P (4.15)

and
U(qP+ V) =pd+ ¥ (4.16)

subtracting equation(4.16) from(4.15) ,we have

P2 —0? = p(U—-d)+(d-V)
(@ —V)(D+T) = —p(®—T)+ (- 0)
(@-¥)(@+V) = (¢-¥)(1-p)
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hence,

P+T¥=1-p
Also,adding equation(4.15) to equation(4.16) then we have
2PV + B2 + U2 = pU+ P+ pd+ T
adding(zero)
2 2, ¢ >
2qOV + @“ + U= + 200 — 200 = p(U 4 D)+ (¥ + D)
2000 + (T + 0)? — 200 = (T4 P)(p+1)
but
P4+U=1-—p
S0
PU(2¢—2)+ (T + ) = (1-p)(p+1)
V(2 —-2)+(1-p)? = p+l-p*—p
1— 2 _ 2
S — pr—(1-p
2q — 2
B 1—p?—1+2p—p?
N 2¢ — 2
_ 20> +2p
S 22
_ 2p—p%)
2(q—1)
hence,
1—
op = P p)’q#l
qg—1

since U > o ;®, Udistinctive nonnegative real number,implies that
p(l—p)>0 and ¢—1>0 (4.17)

or
p(1—p)<0 and ¢—1<0 (4.18)
Now , from equation(4.17) we have q > 1,and we have p > q,s0 p > 1,hence
(1 —p) < 0,80 PV < 0,this contradicts the hypothesis that ®¥ > 0.Also,from
equation(4.18) we have ¢ < 1,and we have p > q,s0 p > 1,hence (1 —p) < 0,s0
®VU < 0,this contradicts the hypothesis that ®W¥ > 0.
Case(b) : k is even.
in this case ® and ¥ satisfy

_p+ U

P
q¥ + U’

and
_pd+ @

qb + @
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SO

T+ <
T+
Zl=

and

P(p+1)
d(g+1)
p+1
q+1

so ® = W.this contradicts the hypothesis that ® and ¥ distinctive nonnegative

real number.
(2) When p<q.

Assume that there exist distinctive nonnegative real number ® and V , such that
e, @V DU

is a prime period-two solution of equation(4.9).there are two cases to be consid-
ered.
Case (a) : k is odd.
in this case ® and VU satisfy

(I):;tﬂIer(I)7
qU+ @
and —
po P2
q® + v

then we have
P+T=1-p

and

@Q:qu#l
q—1

Now , construct the quadratic equation

p(1—p)

=1 =0.

t2— (1 —p)t+

So,the values of ® and ¥ are the (positive and distinct )solutions of the above
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quadratic equation.
1.€.

[ -pEya-pe -
B 2

Case(b) : k is even
in this case ® and ¥ satisfy

and

SO

and

o(p+1)
D(g+1)
p+1
qg+1

so ® = U.This contradicts the hypothesis that ® and ¥ distinctive nonnegative
real number. The proof is complete. m
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4.7 Analysis of Semicycles and Oscillations

We believe that a semicycle analysis of the solution of equation(4.9) is a
powerful tool for a detailed understanding of the entire character of solutions.

In this section , we present some results about the semicycle character of
solutions of equation(4.9).

Theorem 10 Let {y,} be a nontrivial solution of equation(4.9),then the fol-
lowing statements are true:

(a)Assume p > q, then {y,} oscillates about the equilibrium y with semicy-
cles of length k+1 or k+2, except possibly for the first semicycle which may have
length k. The extreme in each semicycle occurs in the first term if the semicycle
has two terms and in the second term if the semicycle has three terms...and in
the k+1 term if the semicycle has k+2 terms.

(b)Assume p < q, then either {y,} oscillates about the equilibrium y with
semicycles of length k after the first semicycle, or {yn} converges monotonically

toy .

Proof. (a)The proof follows from theorem (4) by observing that the condition
p>q implies that the function

_pr+y

f(%y)— q$+y

s increasing in x and decreasing in y. This function also satisfies condi-
tion(4.14).
(b) The proof follows from theorem ( 5) by observing that the condition p<gq

implies that the function

Tty
z,y) =
fz,y) P

is decreasing in x and increasing in y . The proof is complete. ®
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4.8 Attracting Intervals

We now examine the existence of intervals which attract all solution of equa-
tion(4.9).

o0
Lemma 1 let {y,} be a solution of equation(4.9),then the following state-
n=—=k
ments are true :

(1) suppose p < q and assume that for some N > 0.

p
YN—k+1; - YN-1,YN € |:qv]-:| ’

then
Un € [p,l} , for all n > N.
q

(2) suppose p > q and assume that for some N > 0.
p
YN—k+1 -3 YN-1, YN € 176 )
then

UYn € [1,2} , for alln > N.

Proof. We prove (1). The proof of (2) is similar and will be omitted.
If for some N >0 ,1 <yy < g,then

PYn + Yn—k
Yn+1 = ———
qQYn + Yn—k
< le. since p < q.
qYn + Yn—k
also,since 1 < yy < g, then
_ PYn + Yn—k
Yn+1 = —
qYn + Yn—k
p
- p(1) + ¢
T o) +E
p
P
q+y
> 2
q

The proof is complete. ®
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4.9 Global Stability Analysis

In this section we will prove a global attracter for the positive equilibrium
of equation(4.9) .

Theorem 11 Assume that p < q,and k odd, then the positive equilibrium of
equation(4.9) is globally asymptotically stable when

q<pq+3p+1.

Proof. set "
pr+—y

T,y) =

f(z,y) e

we note that f(x,y) is decreasing in x for each fixed y, and increasing in y
for each fized x, also, clearly

p

P < f(z,y) <1 for all x,y >0.

Finally, since
q<pqg+3p+1L

equation(4.9) has no prime period-two solution. Now the conclusion of
theorem(11) follows as a consequence of theorem/(6)

and the fact that y is locally asymptotically stable.
The proof is complete. ®
Theorem 12 Assume that p > q , and
p<pg+3q+1

then the positive equilibrium of equation(4.9) is globally asymptotically stable .

Proof. set "
pr Ty

T,y) =

f(z,y) e

when p>gq, the function f(x,y)is increasing in x for each fized y , and de-
creasing in y for each fixed x, also, clearly

1< fz,y) < g for all x,y >0.

Finally, when
p<pg+3q+1
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the only solution of the system

pM +m pm+ M
= 7’[’)’L:
gM +m gm + M

1s m=M.
Now the result is consequence of theorem (7 ).
The proof is complete. ®
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CHAPTER 5
Computational Approaches
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5.1 Numerical Examples

In order to illustrate the results of the previous sections and to support our
theoretical discussions, we consider several interesting numerical examples in
this section. These examples represent different types of qualitative behavior of
solutions to non-linear difference equations.

In this part, to observe this numerical results clearly, we present tables of
solutions that were carried out using MATLAB. We choose different values for
the parameters p and ¢. It should be noted that y_,y_x+1,...,y—1, Y0 are also
different initial points.

To simplify our exposition we restrict our discussion to the following sections:

e First order difference equation

Here we will represent different types of solutions of equation (4.9) when
k=1

e Second order difference equation

Here we will represent different types of solutions of equation (4.9) when
kE=2.

e Third order difference equation

Here we will represent different types of solutions of equation (4.9) when
k=3.

e Fourth order difference equation

Here we will represent different types of solutions of equation (4.9) when
k=4.

98



plot of x(n+11= sin+1=(ps(n+n-10 g% ) +x(n-17);
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Figure 12: plot of y,4+1 = TR

5.1.1 First Order Difference Equation

Here we will represent different types of solutions of equation (4.9) when
kE=1.

case (1) : p>q.
Example :

Consider the following difference equation

_ 2yn + Yn—1 o
Ypt1 = —————, n=0,1,..
Yn +yn71

with the initial conditions y; = 1,y = 2.(See figure 12)
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(pelr)+ae(n- T30 (e (e (-1,

08 it

solution of x(n+1}
= =
e (a3}

0 20 40 B0 80 100
riterat ion

0.1yn+yn—1

Figure 13: plot of y,,41 = TR —

case (2) : p<gq,q>pg+3p+1.
Example :

Consider the following difference equation

y _ Olyn + Yn—1 n=0.1
s 1Oyn + Yn—1 ’ T

with the initial conditions y; = 1,y2 = 2.(See figure 13)
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plot of x(n+11= =in+11=(pein)+ain- 10 g n)+x (n-100;
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Figure 14: plot of y,,41 = T —

case (3) : p<q,q<pg+3p+1.
Example :

Consider the following difference equation

y _ 0'1yn+yn71 n=0.1
s 0'2yn + Yn—1 ’ T

with the initial conditions y; = 1, y2 = 2.(See figurel4).
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plot of x(n+11= sin+11=(ps(n)+n-230 g% () +x (n-2));
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Figure 15: plot of y,4+1 = TR

5.1.2 Second Order Difference Equation

Here we will represent different types of solutions of equation (4.9) when
kE=2.

case (1) : p>gq and p<pg+3p+1.
Example :

Consider the following difference equation

_ 2yn + Yn—2 o
Ypt1 = ————, n=0,1,..
Yn +ynf2

with the initial conditions y; = 1,y2 = 2, ys = 3.(See figure 15)
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plot of x(n+11= sin+11=(ps(n)+n-230 g% () +x (n-2));
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Figure 16: plot of y,41 = T —

case (2) : p>q and p>pg+3p+1.
Example :

Consider the following difference equation

Y _ ]-Oyn + Yn—2 n=0.1
s 0'2yn + Yn—2 ’ T

with the initial conditions y; = 1,y2 = 2,y3 = 3. (See figure 16 )
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plot of x(n+11= sin+11=(ps(n)+n-230 g% () +x (n-2));
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Figure 17: plot of y,41 = T —

case (3) : p<gq.
Example :

Consider the following difference equation

y _ 0'1yn+yn71 n=0.1
s 1Oyn + Yn—1 ’ T

with the initial conditions y1 = 1,y2 = 2,y3 = 3.(See figure 17).
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plot of x(n+11= sin+11=(px(n)+xn-37 g% () +x(n-3));
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Figure 18: plot of y,4+1 = TR

5.1.3 Third Order Difference Equation

Here we will represent different types of solutions of equation (4.9) when
k=3.

case (1) : p>q.
Example :

Consider the following difference equation

_ 2yn + Yn—3 o
Yptl1 = —————, n=0,1,..
Yn +yn73

with the initial conditions y; = 0.1,92 = 0.2,y3 = 0.3,y4 = 0.4.(See figure
18)
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plot of x(n+11= sin+11=(px(n)+xn-37 g% () +x(n-3));
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case (2) : p<gq,q>pg+3p+1.

Example :

10yn+yn—3s

Consider the following difference equation

Yn+1 =

0~2yn + Yn—3
1Oyn + Yn—-3 ’

n=20,1,..

with the initial conditions y; = 0.5,y2 = 0.4,y3 = 0.6,y4 = 0.3.

(See figure 19).
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plot of x(n+11= sin+11=(px(n)+xn-37 g% () +x(n-3));
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Figure 20: plot of y,41 = T —

case (3) : p<q,q<pg+3p+1.
Example :

Consider the following difference equation

Yy = S Uns g
s 5'2yn + Yn—3 ’ T

with the initial conditions y; = 0.3,y2 = 1.2,y3 = 2.3,y4 = 1.5.
(See figure 20).
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plot of x(n+1)= sin+1)=(px )+ 204 n)+x n-4));
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Figure 21: plot of Y41 = T —

5.1.4 Fourth Order Difference Equation

Here we will represent different types of solutions of equation (4.9) when
kE=4.

case (1) : p>gand p <pg+3p+1.
Example :

Consider the following difference equation

_ 1-5yn+yn—4 n=0.1
Yn+1 O5yn + yn745 5 Ly

with the initial conditions y; = 1,942 = 2,y3 = 3,y4 = 4,y5 = 5.
(See figure 21)
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plot of x(n+1)= sin+1)=(px )+ 204 n)+x n-4));
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Figure 22: plot of y,41 = T —

case (2) : p>q and p>pg+3p+1.
Example :

Consider the following difference equation

1059 tyes
Ynt 0'2yn + Yn—4 ’ T

with the initial conditions y1 = 1,92 = 23,y3 =4,y1 = 5,y5 = 6.
(See figure 22).
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plot of x(n+1)= sin+1)=(px )+ 204 n)+x n-4));

—— p=001, =02
#1 =1, x2=2, ¥3=3, xd=4, x5=5

-------------------------------------------------------------------

___________________________________________________________________
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n-iteration

. 0.01yn+yn—
Figure 23: plot of y,41 = Wm
case (3) : p<gq.
Example :
Consider the following difference equation
0.01y, + yn—
Ynol = Yn T Yn—4a 7’L=0,1,..

0'2yn + Yn—4 ’

with the initial conditions y1 = 1,92 = 2,y3 = 3,ya = 4,y5 = 5.

(See figure 23 ).
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5.2 MATLAB mfile:

In this mfile solution=difference2(k), we investigate the nonlinear rational
difference equation

DYn + Yn—k
ntl] = ————— n=0,1,... 4.9
I G (4.9)
where the parameters p, ¢ and the initial conditions y_g,..., y_1,¥yo are

nonnegative real numbers, k = {1,2,3,...}

Our concentration is on invariant intervals, periodic character, the character
of semicycles and global asymptotic stability of all positive solutions of equa-
tion(4.9)

There have been several programs on the subject of Dynamical Systems.
There are several distinctive aspects which together make this program unique.

e First of all, this program capable of finding approximations of solutions of
this difference equation.

e Second, it can produce high quality graphics representations of solutions
behavior.

e Third, give analysis of the result in details.

e The solution x(n) is given in table .

e Calculate the equilibrium point.

e It provide you if the equilibrium is locally asymptotically stable.

e Also tell you if there is period two solution.

e Furthermore show if the solution oscillates about the equilibrium if so
it gives the length of the semicycles.

e It show the invariant interval in which the solution takes its values .

e And finally, tell you if the equilibrium point is globally asymptotically
stable.

e Fourth, very simple to run; what you should to do is entering the order of
the difference equation(k) in difference2(k) on the command window; and then
follows the directions which the program asked to do; if you set the value of k
to 1,then the program will asked you to enter the values of parameters p, g and
the others of the initial conditions y_1,y. If you set the value of k to 2,then
the program will asked you to enter the values of parameters p, ¢ and the others
of the initial conditions y_s, y¥_1,%0. And so on.
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Conclusion

In this thesis, we investigate the nonlinear rational difference equation

ﬂxn + VLn—k

—_— =0,1,.. 1
an_'_cxnika n )y ( )

Tn41 =

where the parameters 3, v and B, C' and the initial conditions
Z_k,...,o—1 and zo are nonnegative real numbers, k = {1,2,3,...}.

Our concentration was on invariant intervals, periodic character, the char-
acter of semicycles and global asymptotic stability of all positive solutions of

equation(1).

The change of variables

Ty = ly
n C n-
reduces equation(1) to the difference equation
DYn + Yn—k
Yntl = —————, n=20,1,.. 2
" 4+ Yok @
where
_B_ _B
p= 7751 sk
The parameters p, g and the initial conditions y_g,..., y—1,¥yo are nonnegative

real numbers, k = {1,2,3,...}.

In order to investigate the global attractivity, boundedness, periodicity, and
global stability of solution of this difference equation, we use MATLAB to see
how the behavior of this difference equation look like. The solutions that were
carried out using MATLAB agree with the theoretical results of this thesis. As
might be expected, the two cases p > q and p < q give rise to different dynamic
behaviors.

Case(l):p>gq

e The equilibrium point is locally asymptotically stable.

e There is no period two solution.

e The solution oscillates about the equilibrium (p+1)/(¢+ 1) with semicycle
of length k 4 lor k + 2 except possibly for the first semicycle which may have
length k.

e The solution takes its values between 1 and p/q.

e The equilibrium point is globally asymptotically stable if p < pq + 3¢ + 1.

Case(2):p<gq

Subcase(l) : k is even
e The equilibrium point is locally asymptotically stable.
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e The solution oscillates about the equilibrium (p + 1)/(¢ + 1) with semi-
cycle of length k after the first semicycle or it converges monotonically to the
equilibrium.

e The solution takes its values between p/q and 1 .

Subcase(2) : k is odd

Subsubcase(1) : ¢ > pq+ 3p + 1.

e The equilibrium point is unstable.

e There is period two solution.

e The solution oscillates about the equilibrium (p 4+ 1)/(¢ + 1) with semi-
cycle of length k after the first semicycle or it converges monotonically to the
equilibrium.

e The solution takes its values between p/q andl.

Subsubcase(2) : ¢ < pq+ 3p + 1.

e The equilibrium point is locally asymptotically stable.

e The solution oscillates about the equilibrium (p + 1)/(¢ + 1) with semi-
cycle of length k after the first semicycle or it converges monotonically to the
equilibrium.

e The solution takes its values between p/q and 1 .

e The equilibrium point is globally asymptotically stable.

As we mention, this thesis solve the open problem 6.10.17 (equation(6.100))
proposed by Kulenvic and Ladas in their monograph [Dynamics of Second Order
Rational Difference Equations: with Open Problems and Conjectures, Chapman
& Hall/CRC, Boca Raton, 2002]. [7]

But what about the global behavior of all solutions of the same
problem with negative parameters and negative initial conditions.

we proposed this as an open problem and we hope to see the dynamics
of it later on.

Open problem:
Invistigate the global behavior of all solutions of

Bxn + YTn—k

—_— =0,1,...
Bz, + Cx,_y "

Tp+1 =

where the parameters 3, v and B, C' and the initial conditions
ZT_f,...,x_1 and xo are negative real numbers and k& € {1,2,3,...}.
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